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ABSTRACT

Accurate determination of porosity and permeability values at given well locations is a central

problem in petroleum reservoir characterisation.  Recent studies have shown that identification

of individual rock types, or lithofacies, prior to calculating por-perm data can lead to improved

estimates.  This paper uses the genetic approach in predicting porosity and permeability values

from wireline logs and lithofacies information in reservoirs, using a backpropagation neural

network method.  In order to reproduce the fine-scale variability known to exist in core por-perm

data, separate neural nets are used for porosity, followed by permeability prediction.  A

simulation technique for adding fine-scale noise is also used.  For the reservoir data considered,

the fine-scale simulation approach combined with the use of neural networks provides realistic

and accurate por-perm predictions when compared to the core data.
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INTRODUCTION

This paper is concerned with the use of neural net techniques, combined with a geological

description or classification of rock type to give improved predictions of key rock properties in

petroleum reservoirs.  In particular we are concerned with porosity and permeability predictions

which are as precise as possible yet retain variability typical of that which exists within a given

lithofacies, or rock type.  These predictions are based at well locations where available wireline

log suites have been suitably calibrated to available core sample measurements.  In order that

advantages offered by the proposed neural network application can be clearly understood, it is

helpful to first outline key concepts and practices relevant to petroleum reservoirs.  This is

followed by an outline of the contribution made by the present paper.

A.  Petroleum Reservoirs

A petroleum reservoir is a volume of porous sedimentary rock which has been filled, over

geologic time scales, by oil migrating upwards from organic sources.  Oil accumulates where

barriers to further upward oil migration occur.  The oil exists, along with varying amounts of

water and possibly gas, in the pore spaces of the rock.  Typical pore space dimensions are 1-100

microns.  The two most important properties of reservoir rock are its porosity and permeability. 

Porosity is the fraction, or percentage, of the total rock volume which exists as pore space

(typically in the range of 5-30%) whilst permeability is a measure of the mobility of fluid flow

through this pore space when subjected to applied pressure gradients (measured in millidarcy,

or md).  Overall porosity levels control the amount of oil that can be contained in a reservoir,
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whilst the average permeability level dictates the rate at which this oil can be recovered by

imposed pressure gradients  (e.g. water injection).  One of the first tasks when assessing potential

petroleum reservoirs is to determine the porosity and permeability properties (or por-perm data)

of the reservoir rocks.  This process is complicated because the measurement sites available to

petroleum reservoirs are generally limited to isolated well locations.  At these locations,

measurements take the form of actual rock samples and wireline log readings.  Rock samples,

or core samples, are obtained by using a special coring barrel to recover intact cylindrical samples

of reservoir rock.  Wireline log readings are obtained every 150 mm or so of depth, by lowering

various sondes in the drilled wells.  These measure formation and fluid properties in and around

the wellbore location.  Typical sondes generate electrical signals from measurements of the

acoustic, radioactive, resistivity and neutron attenuation and scattering properties of the

formation and its contained fluids.  Some measurements respond more to the rock itself (e.g. the

density log or RHOB), whilst others are more sensitive to the pore space and fluids contained

there-in (e.g. the neutron porosity log or PHIN). Further details on logging are given by Bateman

(1985).  Because coring is a relatively time consuming and expensive process, much effort is

made to relate the electrical log measurements to available core porosity and permeability

measurements so that the transformations developed can be applied to predict por-perm data in

uncored intervals. 

B.  Genetic and Non-Genetic Classification of Reservoirs

The rocks which constitute a petroleum reservoir are far from homogeneous. 

Heterogeneity exists both within and between the different rock types, or lithofacies, which make
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up a reservoir.  Understanding the form and spatial distribution of these heterogeneities is

fundamental to the successful characterisation of petroleum reservoirs (Haldorsen and Damsleth

1993).  Heterogeneities occur on many scales from the cement found between individual sand

grains at the pore scale, through laminations caused by fine silting at the centimetre scale,

through to variations at reservoir scales caused by meandering river belts, deltas and marine

shelves which controlled and directed the large scale deposition of sediment.  This study is

focussed on the estimation of por-perm data at the log scale of 150-1000 mm.  Whilst fluid

saturation is an equally important parameter, its estimation is beyond the scope of this paper.  An

estimation as to the degree of reservoir heterogeneity present in an oil reservoir can be seen in

Figure 1 which shows a RHOB log, which represents the result of a log measurement

transformed to a porosity scale.  Note that the RHOB plot is a very crude estimate of (core)

porosity, and that no adjustment has been made for variations in rock type.

 There are two broad ways in which geologists, petrophysicists and engineers approach

the problem of reservoir characterisation.  These two methods can be described as non-genetic

and genetic approaches (Jian et al. 1994).  The non-genetic approach is the older, more

established process to reservoir characterisation.  This technique does not recognise different

rock types and instead seeks to determine transformations to give porosity and permeability valid

for any rock type.  The genetic approach is a newer concept which seeks to identify and treat each

dominant lithofacies type separately.  Note that our use of the term "genetic" in this paper refers

to the geological classification of rocks, and is in no way related to the different meaning of

"genetic" in the artificial intelligence literature in general.  The genetic approach to reservoir

characterisation implicitly believes that each lithofacies type has distinguishing hydraulic

properties, such as lithofacies-specific relationships between porosity and permeability (Hearn
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et al. 1984, Stiles and Huthilz 1992) and therefore must be treated individually.  Application of

genetic characterisation is two-fold; firstly the dominant rock types or lithofacies must be

identified, secondly lithofacies-specific transformations to porosity and permeability must be

developed.  The reason why a genetic approach is to be preferred over a non-genetic approach

is that a non-genetic approach results in poorer quality predictions of reservoir properties.  Figure

2a is an example plot of core permeability versus porosity for petroleum reservoir.  Whilst simple

analytical models, based on capillary tubes (Carmen 1937), suggest that logarithmic permeability

may be linearly related to porosity, in practice correlations are developed for each individual

reservoir.  A non-genetic approach seeks to correlate the data in Figure 2a using one

transformation whilst a genetic approach breaks the plot up into individual units, and develops

relationships for each one.  Clearly by following a genetic approach, the scatter in permeability

values is much reduced at a given porosity level.  This approach is depicted in Figure 2b.  Note

however, that even when following a genetic approach, that significant scatter remains.  From

the flow prediction viewpoint such variations within a lithofacies, or flow unit, are important and

need to be captured as part of the characterisation process  (Haldorsen and Damsleth, 1993).  This

feature is discussed later in regards the separate configuration of neural nets for porosity and

permeability prediction as well as the use of fine-scale simulation (noise addition) methods to

ensure that predicted por-perm data display this same variability.

C.  Neural Nets and Genetic Classification

Whilst neural network methods have been applied to the problem of supervised

lithofacies classification (Derek et al. 1990, Baldwin et al. 1990, Rogers et al. 1992), few studies
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have considered the use of neural nets to the integrated problem of genetic classification from

wireline log readings, whereby lithofacies prediction at a given depth is followed by the

estimation of porosity and permeability values.  Supervised learning requires training data which

has been labelled with the desired outcome for each pattern of inputs.  In the case of lithofacies

predictions from logs, the available well log data is labelled with the lithofacies group names

obtained from analysis of the appropriate core sample.  This step is not a trivial one and can be

complicated by the different resolution of core samples and log signals.  This aspect will be

discussed in a later section of the paper.  The neural net can be trained to recognise and predict

a given lithofacies from an input set of wireline log readings.  Input features are selected from

the data available in well logs based on geological expert knowledge and examination of each

feature versus core porosity crossplots.  Unlike traditional statistical classification techniques,

such as discriminant analysis, neural networks can simultaneously output both discrete

(lithofacies) and continuous (porosity) data.  Wong et al. (1994b) have recently presented a

comparison study on lithofacies, porosity and permeability predictions from wireline logs using

neural network techniques and that of discriminant analysis followed by a regression stage.  The

results showed that the neural network approach provided superior estimates to those based on

the discriminant analysis approach.  

This work aims to implement the genetic approach using a neural network method for the

purposes of porosity-permeability predictions.  In the examples considered here, we assume that

the lithofacies classification step is already complete, either by hand (a geologist) or as the result

of a supervised classification scheme (e.g. another neural net).  The following sections will first

review the basic properties of neural networks.  Then we will apply the genetic approach to

porosity-permeability predictions from a suite of wireline logs and core-derived lithofacies
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information.  The data set used comes from a reservoir located in the Carnarvon Basin of the

North West Shelf in Australia.  Some of the available data is used to provide the training

patterns, and the remaining data is used as a validation data set to test the performance of the

trained network.  Due to the heterogeneous nature of the formation, a fine-scale simulation

technique is used in this study for better porosity and permeability predictions, and this technique

is also reviewed in the later sections.

NEURAL NETWORK

An artificial neural network, or simply a neural net, is a computer model which attempts

to mimic some parts of the workings of the human brain (Caudill 1988, Dayhoff 1990).  It can

learn and generalise from examples, and is extremely useful in solving pattern classification and

mapping problems.

Training, or learning, is an essential part of using neural nets.  This process requires

training patterns which consist of a number of input signals paired with target signals.  The inputs

are presented to the net and the corresponding outputs are calculated.  The aim of training is to

minimise the differences between the output and target values (i.e. errors) for all the training

pairs.  By training, a set of parameters are produced and can be used for classifying data or

predicting property values in situations where the actual output is unknown.  Note, however, that

this set of parameters is problem-specific because each training data set results in a unique neural

net.  
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A.  Basic Architecture

A typical neural net is composed of three kinds of layers: input, hidden and output layers. 

Each layer is made of a number of nodes, or processing elements.  The input layer nodes are

different from other nodes by only receiving input signals from the outside world and no

mathematical operations are performed.  Each of these inputs layer nodes are connected, via

weighted links, to every node in the hidden layer.  Unlike the input and output layers, the number

of hidden layers can be any positive number (including zero).  Recent studies show that one

hidden layer is generally sufficient to solve complex problems if enough nodes are available

(Hornik et al. 1989, Lippmann 1989) and hence this study was limited to the one hidden layer

structure.  The decision of how many nodes should be present in the hidden layer, however, is

difficult to determine a-priori and is usually determined by trial-and-error (Derek et al. 1990,

Bischof et al. 1992).  The determination of the number of nodes present in input and output layers

is more straight forward and is usually dictated by the particular application.  In some cases, non-

linear input variables (Lippmann 1989, Widrow and Lehr 1990) may also be used (see later

sections).  Output layer nodes receive output signals from hidden layer nodes and therefore

provide responses to a given set of input signals.  

Figure 3 shows a schematic diagram of a network architecture for porosity predictions

using (core-derived) lithofacies with the density (RHOB) and neutron (PHIN) logs.  An

additional non-linear input, using RHOBxPHIN, is also displayed.  In this figure, the input and

hidden layers are composed of four nodes, and output layer contains only one node which gives

the predicted porosity value.  The magnitude of the output depends on the weights on all

connections which are represented by the lines as shown in the figure.  Bias nodes are usually
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included for faster convergence and better decision boundaries (Dayhoff 1990).  The weights on

the bias nodes are treated the same as the others except the inputs are always equal to one (i.e.

fixed). 

B.  Learning Algorithm

The backpropagation (BP) algorithm is the most widely used learning procedure for

supervised neural nets.  Before beginning training, small random numbers are used to initialise

each weight on each connection.  BP requires pre-existing training patterns, and involves a

forward-propagation step followed by a backward-propagation step.  The forward-propagation

step begins by sending the input signals through the nodes of each layer until the actual output

values are calculated.  The backward-propagation step calculates the error vector by comparing

the actual and target outputs.  New sets of weights are re-iteratively calculated, by modifying the

existing weights based on these error values (Rumelhart et al. 1986, Caudill 1988).  Sending all

of the input patterns in the training set through the network and modifying the weights is called

an epoch of training.  As weights are adjusted slowly to allow the network to generalise among

the input patterns in the training set, normally some thousands of epochs of training are required. 

In order to improve the generalisation capabilities of the net, a validation data set (i.e. a

set of known input-output pairings which were withheld from the training set) is usually used to

stop training before generalisation degrades (Morgan and Boulard 1990).  Performance of the

trained net can be evaluated by some simple statistical functions, such as root-mean-square-error

(rmse), on the validation data.  If the error value on the validation set begins to increase, training

is halted and the results are examined to determine whether they are acceptable.  If the results are
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unacceptable, then it is possible to re-train the network, by either modifying some network

parameters (e.g. by varying the number of nodes in the hidden layer over a reasonable range), or

changing the number of training patterns (Mehrotra et al. 1991, Gedeon and Bowden 1992).  To

maintain a balance between being able to generalise from a training set but to not memorise it,

some reasonable relationship between the number of parameters and number of training patterns

must be maintained.  A rule-of-thumb is that there should be at least 10 times as many as weights

in the net.  This clearly limits the number of hidden layer nodes used.  Once  acceptable results

are obtained, the net is ready for use in solving real problems, using the input data for which the

output is not known.

C.  Practical Considerations

A major drawback to the use of the neural net approach is the problem of convergence. 

Convergence in the BP algorithm means that the global minimum (smallest error) of the error

function is obtained in a reasonable amount of iterations, or epochs.  The iterative process may

require long training times of the order of several hundreds of thousands of epochs.  Sometimes

the net may get stuck in a local minimum during training which means that the net has failed to

learn acceptably and gives large errors.  Developing faster learning algorithms and local

minimum detection and avoidance are active areas of research for neural nets (Gedeon and Harris

1992, Gori and Tesi 1992, Scalero and Tepedelenlioglu 1992).

The use of the genetic approach in porosity-permeability predictions requires lithofacies

information as input data.  All the inputs (logs and lithofacies) and target (porosity or

permeability) data is then normalised in the interval (0,1) and (0.1,0.9) respectively (Eberhart and
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Dobbins 1990).  The advantage of using lithofacies information in predicting porosity-

permeability values (i.e. the genetic approach) is to provide additional information allowing the

separation of patterns in the input pattern space, and hence training time will be significantly

reduced (Wong et al. 1994a).  Also, generation of non-linear input variables may also reduce

training time (Wong et al. 1994a) and improve generalisation capabilities of the trained net in

some cases.

We have used two separate neural nets for porosity-permeability predictions.  One is for

the porosity and the other one is for the permeability.  That means only one output node is used

in each net.  It is possible to use two output nodes (i.e. porosity and permeability) in only one net,

however, in our experiments, we could not get this net to perform as well as the separate

networks reported here.  It is possible that different features need to be extracted to predict

porosity and permeability, which could explain the reduced performance of a single network.

CASE STUDY

A.  Objective

The objective of this study was to implement the genetic approach in well log

interpretation using backpropagation neural networks.  Using the genetic concepts, predicting

porosity and permeability values require not only the use of the wireline logs, but also the

lithofacies information as input data.  As discussed in the previous section, two separate neural

nets were used for porosity-permeability predictions in this study.  The predicted results were
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compared to the actual core data and the performance of the technique was then evaluated.

B.  Training and Test Data

The data used in this study was from ten cored wells of a reservoir in the Carnarvon Basin

in Australia.  This data set was constructed from 1303 core data, including lithofacies, porosity

and permeability values, with the corresponding log responses, which consist of bulk density

(RHOB) and neutron (PHIN) logs.  This formation is a lithologically complex reservoir which

was diagnosed by a geologist to consist of 11 dominant lithofacies with distinct porosity and

permeability relationships.  The lithofacies were named as facies 1 to facies 11 for simplicity

purposes.

The data set was divided into a training set and a validation set.  The training data set was

formed by selecting the patterns with density log values falling between the 25th and 75th

percentiles for each lithofacies.  Five hundred and seven (507) samples were finally chosen as

training patterns.  This was done in order to choose representative samples for the training set

and to reduce the regions of overlap for different lithofacies.  The use of data between the 25th

and 75th percentiles is consistent with the standard statistical approach and can be considered a

sure way of ensuring that no outliers are included in the training set.  The validation set was then

constructed using the remaining 796 patterns.  The assumption we made was that these patterns

deviate from the rest largely due to noise.  Thus, the neural net will return results consistent with

its training set, and effectively map patterns into the 25th to 75th percentiles range.  Our results

discussed in the later sections show that this was a valid assumption in this case.

In this study, non-linear input was also generated using RHOB and PHIN as
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RHOBxPHIN.  The input data was then normalised using the minimum and maximum values

from the whole data set in the interval (0,1).  Porosity values were determined in the first net, and

permeability values were then estimated in the second net using the same non-linear input as the

first net, plus the previously predicted porosity values as an additional input.  Figure 4 also shows

the prediction process in simple block diagrams.

C.  Neural Network Architecture

1.  Porosity Prediction

The training patterns were constructed by a set of 4-dimensional input vectors (i.e.

RHOB, PHIN, RHOBxPHIN and lithofacies) and 1-dimensional target vectors (i.e. porosity). 

Four hidden layer nodes were found to produce the best results.  The training data was used to

train the network for 10,000 epochs.  The validation data set was also used to record the lowest

rmse during the training phase.  The rmse was minimised at 3,648 epochs with a value of 0.112

on the validation set.  The contribution of each input variable to the system (Wong et al., 1994a)

was also calculated and is tabulated in Table 1.  This contribution is the relative magnitude of

the weights from an input unit to all hidden units with respect to the sum of all weights of the

inputs to hidden units.  It shows that lithofacies was a very important input variable in porosity

determination as it is characterised by a high contribution percentage.  The weight matrix

defining the network at epoch 3,648 in this example would be used to predict porosity values in

practice.

Due to the heterogeneous nature of the formation, the wireline logs were not able to
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resolve most of the thin beddings of the reservoir, and resulted in smoothed porosity predictions

from the neural net, relative to that obtained from core measurements.  Therefore, a fine-scale

simulation technique was used in order to simulate the variability of the porosity values observed

from the core data (Jian et al. 1994).  The objective of the fine-scale simulation is to mimic the

appearance of the core data.  This is useful because geologists have a great deal of expertise

developed over time to interpret such data.  A smooth curve produced from neural net predictions

appears different and can be less well interpreted than the same curve with the addition of

appropriately fine-scaled noise to re-introduce an indication for them of the expected scatter.

The fine-scale simulation technique requires the use of lithofacies-specific standard error

value derived from the target porosity values (from the training patterns) and the predicted

porosity values (from the trained net).  A simulated noise was calculated by multiplying the

standard error by a normally distributed probability field with zero mean and unit variance.  This

noise was then added to the porosity value obtained from the neural net.  This fine-scale

simulation technique with the use of neural net estimates is referred to as the simulated neural

net method in the rest of this paper.

The statistics of the porosity predictions based on the standard (i.e. no fine-scale

simulation) and the simulated neural net methods are tabulated in Table 2.  The results showed

that the standard neural net method gave a lower rmse compared to the simulated method (0.6%

difference).  This was because the standard method aims to minimise the differences between the

actual and predicted values.  The simulated method, however, aims to reproduce statistics of the

actual data which is usually considered to be one of the most important goals in petrophysical

property prediction.  As shown in Table 2, the simulated method produced better statistics

compared to the standard method.  Figure 5a shows the predicted porosity profiles using the
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standard and the simulated methods with the core data in one of the ten wells, named Well A. 

Note that approximately one-third of the data points in this well were chosen as training patterns. 

Due to the heterogeneous nature of the reservoir, the standard neural net technique resulted in

smoothed predictions as can be observed by a low standard deviation displayed in Table 2.  The

predicted porosity values for all the wells (i.e. 1303 core data) are also displayed in Figure 5b as

histograms.  The simulated neural net porosity produced a similar distribution to the core data. 

The porosity derived from the standard method, however, tended to smooth out the profile and

produces a high frequency content in the 14-16% interval.

2.  Permeability Prediction

For consistency, the training data set for permeability predictions was composed of the

same 507 patterns with the additional porosity information as input data.  This way the 796

withheld data points could be used to assess both porosity and permeability predictions. 

Logarithmic permeability was used at the output node because this variable reduced the amount

of training time and also showed better results compared to using only permeability.  One of the

reasons is that logarithmic permeability is linearly related to porosity in general (see Figures 2a

and 2b).  The results were optimised by using three hidden layer nodes.  The training patterns

were trained for 10,000 epochs.  The same validation data set was again used to record the lowest

rmse during the training phase.  The results were best at 6,975 epochs and a rmse of 0.115 on the

validation set was obtained.  The contribution of each input variable to the system is tabulated

in Table 1.

The simulated neural net method was also used to simulate the fine-scale variations of

16



the permeability predictions.  The results of the standard and simulated methods are tabulated

in Table 2, and the predicted permeability profiles at Well A are shown in Figure 6a.  Histograms

of all predictions are also displayed in Figure 6b.  As discussed earlier for porosity prediction,

the simulated results produce more realistic estimates compared to the standard method.

CONCLUSIONS

A technique for porosity and permeability predictions from wireline log signals within

a genetic framework is presented using backpropagation neural networks.  The technique is also

applied to a data set, already classified into lithofacies type, from a heterogeneous petroleum

reservoir.  Based on the results obtained from the example problem, the major findings are listed

below:

1. Genetic well log interpretation can be implemented using a backpropagation neural

network.

2. The accuracy of porosity and permeability predictions depends strongly on lithofacies

information.

3. The fine-scale simulation technique can be used in conjunction with the neural network

method to reconstruct small scale por-perm variability as part of the overall predictive

process.
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